Tagipython

Ipython notebook ans some statistical distributions

Bernoulli distribution

It was quite a bit that I wanted to have a go to play with the ipython notebook, but I wanted to do it with something that was quite interesting and useful.

The IPython Notebook is a web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document

– from the docs

This means that you can document your process and or exploration using Markdown, which is than beautiful rendered in html, and have also python code executed, with the graphs that are going to be embedded and will stay in the document.

I think it’s a very valuable tool, in particular when you are doing exploratory work, because the process of discovery can be documented and written down, and it a great way to write interactive tutorials.

For example, in this notebook, I’ve plotted the Probability Density Function of several statistical distributions, to have an idea how they are shaped, and which one to pick as base when creating new bayesian model.

You can see how it looks like on nbviewer

exponantial distribution

Numpy, Scipy and friends

I’ve just added a CC BY-NC-SA 3.0 license to my (one year old) presentation about scipy and numpy and imported the code and the stuff on github, so it’s easier for people to download it (and hopefully the link will not go down, after I’ll leave the EBI)

I’ll put it also here, so you can have a look.

[slideshare id=2512270&doc=pylab-091116123248-phpapp02]

© 2020 Train of Thoughts

Theme by Anders NorénUp ↑

By continuing to use the site (scrolling or clicking counts), you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close